LG사이언스랜드

전체메뉴보기 검색 과학상자

원주율은?? 목록

 원주율은 왜 3.14인가요?? 궁금하네요..

이 호기심에 3개의 호기심 해결 답변이 있습니다.

호기심 답변하기

RE : 원주율은??

나제* 2016-01-04

원래는 3.1415926535897932384626...으로 무한 소수입니다.


원의 지름에 일정한 값을 곱한 것이 원의 둘레가 되는데 그 일정한 값이 3.1415926535897932384626...입니다.(무한소수라 일정한 값을 얻을 수 없습니다.)


RE : RE:원주율은??

호기심지* 2012-01-26

원주율은 임의의 원의 지름에 대한 원주(원의 둘레의 길이)의 비라 설명됩니다. 원의 둘레의 길이는 항상 그 지름에 비례하며, 그 비례상수를 원주율이라고 합니다. π(파이)는 둘레를 뜻하는 그리스어의 머리글자 입니다. 고대에는 이 원주율의 값을 대체로 3이라고 생각하고 있었습니다.


 


기원전 3세기 그리스의 아르키메데스에 이르러서는 상당히 정밀한 π 계산법이 나왔습니다. 당시 많은 수학자들은 일반적으로 원의 내접 정다각형 또는 외접 정다각형의 둘레의 길이로 근사 값을 대체하였는데, 이는 원에 내접하는 정n각형의 둘레는 원주보다 짧고 원에 외접하는 닮은 도형의 둘레는 원주보다 길다는 사실에 기초하고 있습니다. 아르키메데스는 원에 내접 및 외접하는 정 96각형 둘레의 범위를 구하여 <π< 로 나타내었는데 이를 소수로 표현하면 3.140845 < π < 3.1428571 입니다.


 


16세기의 독일의 수학자 루돌프는 원둘레를 계속 이등분하여 결국 원에 내접, 외접하는 정다각형으로부터 원주율을 3.14159265358979323846264338327950288 와 같이 소수점아래 35자리까지 계산하였습니다. 그러나 원주율(π)은 그 끝을 알 수 없는 무리수(두 정수의 비로 나타낼 수 없는 수)이며 초월수(대수 방정식의 근이 되지 못하는 수)이며, 어떤 특정한 규칙이 없기 때문에 π의 값을 구하는 데는 엄청난 계산과정이 필요합니다. 즉, π= 3.1415926535....


1997년 일본 도쿄(東京)대 대형계산기센터의 가나다 야스마사(金田康正) 교수팀이 최신 슈퍼컴퓨터를 이용, 원주율 (π) 을 소수점이하 515억자리까지 밝혀냄으로써 이 분야의 세계기록을 경신했으며, 2002년 일본 도쿄대 연구팀은 슈퍼컴퓨터를 4백시간 동안 돌려 π값을 1조2천4백억 자리까지 계산했습니다. 한편 미국, 유럽 등에서는 3월14일을 `파이(원주율,π)'의 날이라고 하기도 합니다.
 

RE : RE:원주율은??

서관* 2012-01-22

 흔히 사람들은 원주율을 구하는 방법을


원의둘레/원의지름 이라고들 하죠


 


원주율의 뜻이 원의 지름에 따른 원의 둘레의 비율이에요


 


근데 제 생각에는 이게 아닌거 같아요


왜냐하면 나눗셈으로는 무조건 순환소수만 나오기 떄문에 3.141592......처럼 비순환소수가 나올수가 없어요


제 생각으로는 분명 따른 공식이 있다고 봐요ㅎㅎ


이렇게 밖에 설명 못드려서 죄송합니다ㅎㅎ;;;

주제!
관련주제가 없습니다.

호기심 질문하기

사진올리기 바로가기